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In Vivo Protein-DNA Interactions at the c-jun Promoter 
in Quiescent and Serum-Stimulated Fibroblasts 
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Abstract c-Jun is an important component in the regulation of cell proliferation. As a member of the early 
response gene family, c-jun is induced within minutes in the presence of mitogenic agents such as serum growth 
factors. Using in vivo footprinting, we have analyzed protein-DNA interactions at the c-jun promoter in human 
fibroblasts subjected to growth arrest and serum stimulation. We located seven footprints upstream of the transcription 
initiation site. Protein-DNA interactions were detected at two AP-I-like sequences, a CCAAT box, an SP-1 sequence, an 
NF-jun sequence, a putative RSRF (related to serum response factor) binding site, and a sequence bound by an unknown 
factor. All of these binding sites were occupied in serum-starved cells, and no additional protein-DNA interactions were 
detected upon serum stimulation. Evidence from this study supports a model in which expression of the c-jun gene is 
mediated by phosphorylation events taking place on the transactivation domains of promoter-bound transcriptional 
activators. D 1995 wiley-Liss, Inc. 
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Members of the “immediate early response” 
family of genes include, among others, c-jun, 
c-fos, and several genes related to c-jun and 
c-fos. These genes are characterized by their 
rapid activation in quiescent cells in response to 
mitogenic stimuli [Bravo, 1990; Angel and Ka- 
rin, 1991; Herschman, 1991; Muller et al., 19931. 
Altered transcription occurs due to the propaga- 
tion of an extracellular stimulus (i.e., by a growth 
factor) to the nucleus by way of a complex net- 
work of messenger molecules [Muller et al., 1993; 
Karin, 19921. Though the exact role of c-Jun in 
cell proliferation remains unknown, several stud- 
ies have elucidated certain functions of c-Jun in 
the cell cycle. Transition of NIH-3T3 fibroblasts 
and WI-38 human fibroblasts from Go to GI is 
characterized by rapid induction of the c-jun 
gene [Lamph et al., 1988; Quantin and 
Breathnach, 1988; Ryder and Nathans, 1988; 
Carter et al., 19911. c-Jun protein is required for 
cell cycle progression in fibroblasts [Kovary and 
Bravo, 19913. In Friend murine erythroleuke- 
mia cells, c-jun expression is required to main- 
tain continuous proliferation, while selective in- 
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hibition of c-Jun, with antisense transcripts, 
causes logarithmically dividing cells to revert 
back to a state resembling Go [Smith and 
Prochownik, 19921. 

c-jun is positively autoregulated by its own 
product, c-Jun, through an AP-1-like sequence 
in the promoter of the c-jun gene [Angel et al., 
19881. This autoregulatory loop is thought to be 
responsible for signal amplification and conver- 
sion of a transient signal generated by extracel- 
lular stimuli into a longer lasting transcrip- 
tional response. This response is then 
transmitted to other genes by binding of c-Jun 
to AP-1-like sequences resulting in increased 
transcription of different cellular genes in the 
presence of growth factors or tumor promoters 
(i.e., TPA; 12-0-tetradecanoyl phorbol 13-ac- 
etate). The transcription factor A€’-1 is com- 
posed of either Jun/Jun,  Jun/Fos protein 
dimers, or other combinations of members of 
these two gene families [Curran and Franza, 
19881. Members of the AP-1 family can also 
crossdimerize with ATF/CREB transcription fac- 
tors [Hai and Curran, 19911. 

The c-jun gene is expressed in response to a 
variety of external stimuli, including growth 
factors, W radiation, ionizing radiation, oxida- 
tive stress, and various chemical agents [Sher- 
man et al., 1990; Devary et al., 1991; Bergelson 
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et al., 19941. Elevation of c-jun mRNA levels in 
response to these stimuli is a consequence of 
increased transcription of the gene [Quantin 
and Breathnach, 1988; Ryder and Nathans, 
1988; Wu et al., 1989; Sherman et al., 1990; 
Devary et al., 1991; Chauhan et al., 1993; Bergel- 
son et al., 19941. We have recently analyzed the 
promoter of the c-jun gene in HeLa cells during 
U V  irradiation, which induces the gene > 100- 
fold [Devary et al., 1991; Rozek and Pfeifer, 
19931. Six transcriptional activator proteins were 
detected along the c jun  promoter region in HeLa 
cells. Surprisingly, no changes in protein-DNA 
interactions were observed during the UV re- 
sponse, indicating that induction of the gene 
was mediated by preformed protein-DNA com- 
plexes at the promoter. 

Our objective in this study was to determine 
which transcription factors are bound to the 
c-jun promoter in human fibroblasts and 
whether any changes in factor binding would 
accompany the induction of the gene by serum 
growth factors. 

EXPERIMENTAL PROCEDURES 
Cell Culture 

Human male fibroblasts were grown in Dul- 
becco’s modified Eagles medium (DMEM) with 
10% fetal calf serum. The cells were grown un- 
der the following conditions: subconfluent cul- 
tures (60-70% confluent) were serum-starved 
for 48 h with serum-free medium. After 48 h, 
serum-starved fibroblasts were treated with 10% 
fetal bovine serum for various lengths of time: 
15 min, 30 min, and 60 min. 

RNA Analysis 

RNA was isolated from the serum-stimulated 
samples via the guanidinium isothiocyanate 
method [Chirgwin et al., 19791 and 10 pg of 
total cellular RNA was separated on a 1% form- 
aldehyde agarose gel. Hybridization of RNA with 
a c-jun-specific probe after transfer to a nylon 
membrane was done as described previously 
[Rozek and Pfeifer, 19931. 

Dimethyl Sulfate Footprinting 

Fibroblasts were scraped from petri dishes 
with a rubber policeman, collected by a quick 
centrifugation step, and treated with 10 ml of 
DMEM containing 0.2% dimethyl sulfate (DMS; 
Aldrich, Milwaukee, WI). Incubation was at room 
temperature for 10 min. Ice-cold phosphate buff- 

ered saline (PBS) (40 ml) was added to the 
solution, and cells were collected by centrifuga- 
tion and washed with an additional 30 ml of cold 
PBS. Nuclei were isolated to remove any DMS 
trapped in the cytoplasm [Pfeifer et al., 1990, 
19931. Following proteinase K digestion, DNA 
was isolated by phenol-chloroform extraction 
and ethanol precipitation. The DNA was then 
dissolved in 1 M piperidine and incubated for 30 
min at 90°C. The piperidine-cleaved DNA was 
ethanol precipitated and dissolved in water to a 
concentration of 1 pg/ pl. To obtain similar band 
intensities in individual lanes of the sequencing 
gel, approximately equal amounts of DNA (1 pg 
as estimated from the gel) were processed for 
the ligation-mediated polymerase chain reaction 
(LMPCR) analysis. Naked DNA controls were 
obtained by in vitro treatment of fibrobast DNA 
with DMS [Maxam and Gilbert, 19801. G, G + A, 
T + C, and C reactions were performed with 
HeLa DNA, and these were included on the 
footprinting gels to provide position markers. 

Oligonucleotide Primers 

The LMPCR primer sets A, B, C, and D were 
described previously [Rozek and Pfeifer, 19931. 
Primers A-1, B-1, C-1, and D-1 are the Se- 
quenase primers. Primers A-2, B-2, C-2, and D-2 
are the PCR primers (these were gel-purified). 
Primers A-3, B-3, C-3, and D-3 were used to 
make the hybridization probes [Rozek and 
Pfeifer, 19931. 

Ligation-Mediated PCR (LMPCR) 

Gene-specific footprint ladders were amplified 
via the LMPCR method as described previously 
[Pfeifer et al., 1990, 1993; Rozek and Pfeifer, 
19931. The PCR products were separated on an 
8% polyacrylamide, 7 M urea sequencing gel (60 
cm long) and electroblotted onto a nylon mem- 
brane (Genescreen; New England Nuclear, Bos- 
ton, MA). Hybridization of the membrane- 
bound DNA was done overnight at 60°C. Linear 
PCR was used to make single stranded hybridiza- 
tion probes by utilizing the primer sets (n)-3 
[Rozek and Pfeifer, 19931. The nylon mem- 
branes were washed at  60°C. 

RESULTS 
induction of c-jun mRNA by Serum Stimulation 

Serum-starved fibroblasts were stimulated by 
addition of 10% fetal bovine serum, and RNA 
was isolated at various time points following 
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serum addition. Figure 1 shows a Northern blot 
analysis with a c-jun-specific probe. As expected 
from previous work [Angel et al., 1988; Carter et 
al., 19911, there is a rapid increase in c-jun 
mRNA levels after serum exposure, which is 
characteristic of early response genes. mRNA 
levels after 1 h of serum stimulation were seven- 
to eightfold higher than before addition of se- 
rum, as determined by phosphoimaging. A com- 
parison to the ethidium bromide-stained gel 
showed that p-actin mRNA was not signifi- 
cantly induced under these conditions. This in- 
duction of the c-jun gene is similar to levels 
reported by other investigators [Angel et al., 
19881. The increase in c-jun mRNA levels is due 
to an increased transcription rate [Quantin and 
Breathnach, 1988; Ryder and Nathans, 1988; 
Wu et al., 1989; Chauhan et al., 1993; Wang and 
Scott, 19941. 

DMS Footprinting of the c-jun Promoter 

Our previous in vivo footprinting analysis in- 
volved the use of both DNAse I and DMS to map 
the c-jun promoter in HeLa cells [Rozek and 
Pfeifer, 19931. Since no apparent dissimilarities 
between the footprints seen by both of the meth- 
ods existed, we decided to use DMS for reasons 
of simplicity. DMS permeates the cellular mem- 
branes and enters the nucleus, where it preferen- 
tially reacts with purines. 7-methylguanines are 
formed predominantly in the presence of DMS, 
thereby creating sites which are cleavable with 
hot piperidine. Differences between the DMS 
control (naked) DNA and DMS-treated cells sig- 
nify positions of protein-DNA interactions in 

0’ 15’ 3 0’ 60‘ 

c-jun 

P-actin 

Fig. 1 .  Northern blot analysis showing serum inducibility of 
c-jun. Cells were grown to 70% confluency, serum-starved for 
48 h, and incubated with 10% serum for the indicated periods 
of time. Total cellular RNA was separated on a 1% agarose gel, 
transferred to a nylon membrane, and hybridized with a c-jun- 
specific probe. The same blot was rehybridized with a probe for 
p-actin. 

vivo. These differences can be either a hyporeac- 
tivity or hyperreactivity in vivo, depending on 
the nature of the protein-DNA contacts involved 
[Pfeifer, 19921. 

Fibroblasts were growth-arrested by serum 
starvation and were stimulated to reenter the 
cell cycle by addition of fresh serum. In vivo 
DMS footprinting was carried out at the same 
time points as when RNA was isolated for North- 
ern blot analysis. The DMS-treated DNA was 
purified from the cells and cleaved at the posi- 
tions of methylated purines with hot piperidine, 
and c-jun-specific sequences were amplified by 
using LMPCR with gene-specific primers. 

In Figure 2A, sequences of the lower strand of 
the region spanning nts. -75 to -202 upstream 
from the transcription initiation site were ana- 
lyzed. Most Gs at the bottom of the gel are 
protected from DMS modification, and this re- 
gion contains the distal AP-1-like sequence (5’- 
TGAGGTAA) of the c-jun promoter as well as a 
purine rich sequence (5’-GGAGG) which binds a 
factor of unknown identity. Other differences 
between modification of naked DNA and modifi- 
cation of DNA within cells are seen within the 
sequence 5‘-GGAGACTCC, which is the binding 
site for transcription factor NF-jun [Brach et al., 
19921. Near the top of the gel, a footprint is seen 
at the SP-1 consensus sequence t5’-GGGCGGG) 
where two hyperreactive G residues are flanked 
by several protected Gs. Figure 2B shows an 
analysis of the upper strand from nts. -157 to 
-235. Several Gs flanking the AP-1-like se- 
quence are either protected or hyperreactive, 
although the 5’-TTACCTCA sequence itself con- 
tains no Gs. A comparison between the G lanes 
of the serum-starved cells and the various time 
points after serum addition reveals that, with 
the exception of a few minor differences in band 
intensities (which were not reproducible), no 
significant changes are observed in the footprint 
patterns. All in vivo footprints that are observed 
when the gene is maximally expressed are al- 
ready seen in serum-starved cells prior to  induc- 
tion. 

Figure 3 shows an analysis of lower strand 
sequences ( -  128 to -62) closer to  the transcrip- 
tion initiation site. The SP-1 sequence is now 
situated at the bottom of the gel. A 5’-CCAAT 
sequence shows an in vivo footprint that is char- 
acterized by protection of the two G residues on 
the opposite strand of the recognition site (5’- 
ATTGG). A second AP-1-like sequence (5’- 
TGATGTCA) is footprinted at  the top of the gel. 
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Fig. 2. Genomic footprinting of the c-jun promoter in human 
fibroblasts. A: Sequences shown cover the region spanning nts. 
-75 to -202 upstream from the major transcription initiation 
site. Lanes 1-3: Maxam-Gilbert control sequences. [Maxam 
and Gilbert, 19801 Lane 4: Fibroblast DNA treated with DMS in 
vitro. Lanes 5-8: DNA from serum-starved fibroblasts treated 
with DMS at various time points following serum addition: 0 
min (lane 5), 15  min (lane 6), 30 min (lane 7) ,  and 60 min (lane 
8). The guanine residues hyporeactive to in vivo DMS treatment 

are identified with an open circle; closed circles represent 
guanines hyperreactive to DMS in vivo. Primers (A1 /2/3) were 
used for LMPCR analysis. B: The region analyzed is the upper 
strand at nts. -1 57 to -235. Lanes 1 ,2 :  Maxam-Gilbert control 
DNA. Lane 3: Fibroblast DNA treated with DMS in vitro. Lanes 
4-7: DNA from serum-starved fibroblasts treated with DMS at 
various time points following serum addition. Primers (B1/2/3) 
were used for LMPCR analysis. 

BK3


BK3
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Fig. 3. Genomic footprinting of the c-jun promoter in human 
fibroblasts. Lanes 1-3: Maxam-Gilbert control samples. Lane 4: 
Fibroblast DNA treated with DMS in vitro. Lanes 5-8: DNA 
from serum-starved fibroblasts treated with DMS at various 
time points following serum addition: 0 min (lane 5), 15  min 
(lane 6), 30 min (lane 7), and 60 min (lane 8). Less DNA was 
loaded in the 30 min lane. The G residues hyporeactive to in 
vivo DMS treatment are identified with an open circle; closed 
circles represent Cs hyperreactive to DMS in vivo. The lower 
strand from -62 to -128 was analyzed using primers (C1/2/3) 
for LMPCR analysis. 

Figure 4 shows the upper strand of the se- 
quences -44 to -196. Clear differential DMS 
reactivities are observed along the NF-jun, SP-1, 
CCAAT, and AP-1 sequences. In addition, there 
is an indication of protein binding to a putative 

RSRF (related to serum response factor) bind- 
ing site at nt. -60 to -49. Again, no significant 
changes are observed after induction of c-jun 
expression by serum growth factors. The RSRF 
site appears to be occupied in serum-starved 
cells prior to induction. Figure 5 shows a sum- 
mary of all in vivo footprinting results. The 
observed footprints generally fall into consensus 
binding sites for known transcription factors, as 
listed above. One additional footprint is seen at 
position -176 to -167. These sequences have 
no apparent homology to known factor recogni- 
tion sequences (marked ? in Fig. 5). 

DISCUSSION 

Our results show that no changes, in terms of 
transcription factor-specific in vivo footprints, 
occur at  the c-jun promoter during the course of 
transcriptional activation in response to  serum. 
In addition, we found no differences between 
confluent, subconfluent, and serum-starved con- 
fluent fibroblast cultures (data not shown). 
These in vivo footprinting experiments do not 
rule out the possibility that different members 
of a transcription factor family (e.g., AP-l-like 
proteins) could bind to  the c-jun promoter prior 
to and after serum induction. This would, how- 
ever, require that all detectable DNA contacts 
made by these proteins be identical before and 
after factor exchange. 

Some of the observed in vivo DMS footprint- 
ing patterns in fibroblasts correspond to those 
previously reported in HeLa cells, while others 
are clearly different. The DMS footprints for the 
distal AP-1 site (nt. - 190), the SP-1 sequences, 
and the NF-jun site are very similar between 
HeLa cells and fibroblasts (Fig. 5) [see Rozek 
and Pfeifer, 19931. Some differences between 
the two cell lines were observed at A residues. 
Some A residues may appear more hyperreac- 
tive in vivo when increased depurination of 
3-methyladenine takes place during isolation of 
DNA from DMS-treated cells (e.g., during pro- 
longed incubation at 37°C). For this reason, 
reactivity differences at adenines seen between 
independent experiments cannot be directly com- 
pared. The in vivo DMS footprints seen in HeLa 
cells [Rozek and Pfeifer, 19931 and fibroblasts 
[this study] at  the CCAAT box and at the pro- 
moter-proximal AP-1 site are dissimilar. For 
comparison, these sequences are shown in Fig- 
ure 6. Although the G residues within the core 
recognition sequences of the respective transcrip- 
tion factors (5’-CCAAT and 5’-TGACATCA, re- 
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AP-1 
0 0 0 0 -226 gaaagaaggg cccgactgta ggagggcagc ggagc 

ctttcttccc gggctgacat cctcccgtcg 
00 00 0 

SP-1 NF-jun 

-166 0 gggcccagag aagaatcttc taggg gygt!gt gag gag+=. 
cccgggtctc ttcttagaag atccc Ctc a a acca ct ccgccc gggcgg gg 

00 0 0  

CCAAT SP-1 
0 0  

-106 tgagagcgac gcga ccaat gggaaggcct 
actctcgctg cgct QzcttcIgga 00 

RSRF 0 .  

I' -46 ttgactggta gcagataagt gttgagctcg ggctggataa gggctcagag ttgcactgag 
aactgaccat cgtctattca caactcgagc ccgacctatt cccgagtctc aacgtgactc 

Fig. 5. Summary of the genomic DMS footprinting data. Open and closed circles represent Cs which are 
hypo- and hyperreactive to DMS in vivo, respectively. Unmarked nucleotides indicate no reactivity 
difference. The putative transcription factor binding sites are circled with a box, and the arrow marks the 
major transcription initiation site. 

tion domain, and at two to three sites next to its 
DNA binding domain. Although one report 
yielded conflicting results [Baker et al., 19921, 
there is evidence that phosphorylation of serines 
63 and 73 increases the transactivation poten- 
tial of c-Jun [Pulverer et al., 1991; Binetruy et 
al., 1991; Smeal et al., 1992; Hibi et al., 19931. 
Growth factor-induced signalling pathways and 

other signal transduction cascades may be fun- 
neled into phosphorylation events at these same 
two critical sites on the c-Jun protein. 

Signal transduction appears to  be operating 
through preformed protein DNA complexes at 
other promoters as well. Serum stimulation of 
c-fos expression is mediated by a multiprotein 
complex at the serum response element, and 

Fibroblasts 

CCAAT AP-1 
0 0  0 0 0  

-106 tgagagcgac g c g a m  gggaaggcct tggy&sc>t:$cta -57 
actctcgctg cgctdpt&cccttccgga accc ct t a acccgat 

0 .  00 - 0  

HeLa 
CCAAT 

Q:ctt:cgga 

0 0 0  
-106 tgagagcgac gcga ccaat gggaaggcct 

actctcgctg cgct 
0 0  00 

Fig. 6. A comparison of in vivo footprints at the CCAAT box and AP-1 site in fibroblasts and HeLa cells. 
The data for HeLa cells were taken from Rozek and Pfeifer [19931. 
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DNA binding of this complex is unaltered by 
growth factor induction [Herrera et al., 19891. 
The growth factor responsiveness of the c-fos 
gene is mediated by serum response factor form- 
ing a ternary complex with an accessory factor 
(Elk-1/TCF) at the c-fos serum response ele- 
ment. The transactivation potential of the ter- 
nary complex is strongly increased by growth 
factor-induced phosphorylation of the Elk-1 / 
TCF protein [Marais et al., 1993; Zinck et al., 
19931. Mechanisms by which posttranslational 
events may modify promoter-bound RSRF pro- 
teins are not known at present. Preformed tran- 
scription factor complexes at the promoters of 
early response genes may be important links in 
allowing rapid transduction of extracellular sig- 
nals to the transcription machinery. 
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